

Why do we need decimals?

- Decimals give a statement of the accuracy of measurement
- They are convenient to show relative size

What is the difference between 3.2 and 3.20?

- > 3.2 indicates a level of accuracy of $\frac{1}{10}$, i.e. 3.2 is between 3.15 and 3.24
- > 3.20 indicates a level of accuracy of $\frac{1}{100}$, i.e 3.20 it is between 3.150 and 3.249

Why is 312> 289?

To answer the question we need to understand the place value system.

A common misconception with decimals is that students see the number with the most digits as the largest number. E.g 2.127 \Rightarrow 3.2

It is essential that students fully understand the place value system.

The size of a decimal is determined by the size of its digits, on a sliding scale, from left to right.

hundreds	tens	units	•	tenths	hundredths

Written in order of size, from smallest to largest are: 3.09, 3.214, 3.8

Simplify 0.5 + 1.34

0.5 <mark>0</mark>	In this example we've obeyed the rule of adding like terms to like terms.
<u>+ 1.34</u> 1.84	How do we know which terms are the like terms?

Simplify the following: 0.8 - 0.008

Note

Addition and subtraction of decimals is similar to that of fractions in that we add the numbers with the same denominator. (i.e. like terms to like terms)

e.g.
$$\frac{1}{10} + \frac{1}{10} = \frac{2}{10}$$
, which is equivalent to $\frac{1}{5}$.

Also, 0.1 + 0.1 = 0.1 + 0.1 0.2

Algebraic fractions are also added and subtracted in the same manner as fractions and decimals. (i.e. like terms to like terms)

Example: 34.5 × 20.5

Estimate

Calculate

2 times 35 is 70, so 20 times 35 is 700. A reasonable estimate of the answer is 700.

34.5 <u>×20.5</u> 1725 <u>69000</u> 707.25	The common problem with multiplication in decimals is where to place the decimal point. If the original estimate is accurate this should inform the decision. In this case the point goes between the 7 and the 2, giving each digit the correct value.
--	--

Check

